MATEMAKITA.COM Referensi Online Matematika

Fungsi Kuadrat

Fungsi kuadrat adalah fungsi polinom dengan pangkat peubah tertingginya adalah 2.
Secara umum berbentuk f(x)=ax2+bx+c atau y=ax2+bx+c.

Sebuah fungsi selalu berhubungan dengan grafik fungsi. Begitu pun dengan fungsi kuadrat. Grafik fungsi kuadrat berbentuk parabola. Untuk menggambar grafik fungsi kuadrat harus ditentukan titik potong dengan sumbu koordinat dan titik ekstrim. Sebutan lain untuk titik ekstrim adalah titik puncak atau titik maksimum/minimum. Sekarang kita bahas bagian-bagian tersebut satu per satu.

Titik potong dengan sumbu koordinat
Titik potong dengan sumbu X diperoleh dengan cara mencari nilai peubah x pada fungsi kuadrat jika nilai peubah y sama dengan nol, sehingga akan diperoleh titik potong (x1,0) dan (x2,0), dimana x1 dan x2 merupakan akar-akar persamaan kuadrat. Tapi perlu diingat bahwa akar-akar persamaan kuadrat tergantung dari diskriminan. Jika diskriminannya sama dengan nol maka akan diperoleh hanya satu akar dan ini berarti hanya ada satu titik potong dengan sumbu X. Kalau diskriminannya kurang dari nol persamaan kuadrat tersebut tidak memiliki akar real yang berarti tidak memiliki titik potong dengan sumbu X.

Titik potong dengan sumbu Y diperoleh dengan cara mencari nilai y pada fungsi kuadrat jika nilai peubah x sama dengan nol, sehingga diperoleh titik (0,y1).

Titik Ekstrim
Titik ekstrim pada fungsi kuadrat merupakan koordinat dengan absisnya merupakan nilai sumbu simetri dan ordinatnya merupakan nilai ekstrim. Pasangan koordinat titik ekstrim pada fungsi kuadrat y=ax2+bx+c adalah sebagai berikut.

Seperti yang sudah disebutkan di atas, adalah sumbu simetri dan merupakan nilai ekstrim fungsi kuadrat.

Pembuktian Rumus Titik Ekstrim Fungsi Kuadrat
Titik ekstrim bisa diperoleh dari konsep turunan pertama.
Titik ekstrim fungsi kuadrat y=ax2 + bx + c diperoleh dengan cara menurunkannya terlebih dahulu, kemudian hasil turunannya sama dengan nol, y' = 0, sehingga diperoleh bentuk sebagai berikut.

Substitusi x-ekstrim ini ke fungsi kuadrat awal

Langkah-Langkah Menggambar Grafik Fungsi Kuadrat y=ax2+bx+c

  1. Tentukan titik potong dengan sumbu koordinat.
    • Titik potong dengan sumbu X jika y=0.
      (tidak ada untuk fungsi kuadrat yang memiliki D<0).
    • Titik Potong dengan sumbu Y jika x=0.
  2. Tentukan titik ekstrim, yaitu .

Mari kita bedah fungsi kuadrat f(x)=x2-6x+8
Titik potong dengan sumbu X
Ingat titik potong dengan sumbu X diperoleh jika nilai y=0, sehingga akan diperoleh bentuk persamaan kuadrat x2-6x+8=0.
Untuk memastikan bahwa persamaan kuadrat di atas memiliki akar, kita cari dulu diskriminannya.
D=b2-4ac=(-6)2-4(1)(8)=36-32=4
Karena diskriminannya 4 (positif) pastilah persamaan kuadratnya memiliki dua akar real berbeda. Artinya, fungsi kuadrat di atas memiliki dua titik potong dengan sumbu X. Titik potong dengan sumbu X diperoleh dari akar-akar persamaan kuadrat.
x2-6x+8=0
(x-2)(x-4)=0
x=2 atau x=4
Jadi, titik potong dengan sumbu X adalah (2,0) dan (4,0)

Titik Potong dengan Sumbu Y
Titik potong dengan sumbu Y diperoleh jika nilai x=0.
y=x2-6x+8
y=02-6(0)+8=8
Jadi, titik potong dengan sumbu Y adalah (0,8)

Titik Ekstrim
Titik ekstrim fungsi kuadrat f(x)=ax2+bx+c adalah .
Berarti untuk fungsi kuadrat f(x)=x2-6x+8 titik ekstrimnya adalah sebagai berikut.

Sumbu simetrinya adalah x=3 dan nilai ekstrimnya adalah -1.

Dari informasi titik potong dengan sumbu X, titik potong dengan sumbu Y, dan titik ekstrim kita bisa menggambar grafik fungsi kuadrat. Langkahnya, setelah diperoleh titik potong dengan sumbu X, titik potong dengan sumbu Y, dan titik ekstrim, gambarkan titik-titik tersebut pada koordinat kartesius lalu hubungkan dengan kurva halus. Pada contoh di atas, fungsi kuadrat f(x)=x2-6x+8 memiliki titik potong dengan sumbu X (2,0) dan (4,0), titik potong dengan sumbu Y (0,8) dan titik ekstrim (3,-1). Gambarkan titik-titik ini pada koordinat kartesius seperti pada gambar di bawah ini.

Lalu hubungkan titik-titik tersebut dengan sebuah kurva halus, sehingga akan diperoleh kurva fungsi kuadrat f(x)=x2-6x+8 sebagai berikut.

Contoh soal dan pembahasan
Soal:
Jika fungsi f(x)=px2-(p+1)x-6 mencapai nilai tertinggi untuk x=-1, tentukan nilai p.
Jawaban:
x=-1 adalah sumbu simetri, rumusnya -b/2a.
Berarti -b/2a=-1
-(-(p+1))/2(p)=-1
p+1=-2p
3p=-1
p=-1/3


Soal:
Tentukan titik ekstrim dan titik potong dengan sumbu X untuk fungsi kuadrat
f(x)=x2-20x+75.
Jawaban:

Demi menghargai hak kekayaan intelektual, mohon untuk tidak menyalin sebagian atau seluruh halaman web ini dengan cara apa pun untuk ditampilkan di halaman web lain atau diklaim sebagai karya milik Anda. Tindakan tersebut hanya akan merugikan diri Anda sendiri. Jika membutuhkan halaman ini dengan tujuan untuk digunakan sendiri, silakan unduh atau cetak secara langsung.

comments powered by Disqus
DMCA.com Protected by Copyscape Web Copyright Checker